jingjing @ 2011-09-16:
您好!真的很感谢您提供这么一个平台和机会,为我们这些在学习结构方程模型和相关软件有困惑的同学提供具体的解答,谢谢您~
我想请教您的问题是:我的毕业论文中,要研究x和y的关系,其中x只有一个指标,y有两个指标,还有控制变量c1/c2/c3/c4/c5,其中c1/c2是年度变量和行业变量,我想问您的是这种外生潜变量只有一个指标,内生潜变量有两个指标能不能用结构方程模型做?lisrel软件中又是怎么编程的?年度控制变量和行业控制变量又是如何设置的?是直接赋值为1、2.。。。吗?
我刚接触结构方程模型和lisrel软件,很多问题都没弄明白,特别是在软件的操作上,请您多指教~~
庄主 @ 2011-09-17:
一、你的控制变量写为“c1/c2/c3/c4/c5”是什么意思?是五个latent factors(隐含因子)还是五个observed indicators(测量指标)?如是后者,它们分属哪些隐含因子?“c1/c2”不会是指c1除以c2吧?请说明。定量研究中使用的语言一定要明确无疑义。
二、你的数据(X含一个测量指标、Y含两个测量指标)既可以用SEM分析,也可以用常规回归分析,结果相仿。与回归相比,SEM最直接的两个优势在于:a)含有多个测量指标的各因子之间的关系不受测量误差影响;b) 检验中介变量的间接影响。你的数据无法享受这两项优势,所以用不用SEM差别不大。(SEM还有其它优势,因与本文无关,所以略过。)
三、我在第一点中讲定量研究的语言要明确无疑,而在第二点中说本案中用SEM和回归“结果相仿”和“差别不大”,两者之间是否有矛盾?非也。根据目前知道的信息,只能得出后者的结论。如果有x, y1和y2的相关系数矩阵,加上样本数,就能进一步知道“相仿”或“差别”的程度,但现在可以确定的是这种程度并不大(以X和Y的相关关系来说,也许在0.01-0.02之间)。
一般而言,消除X和Y之关系中的测量误差,X和Y各自至少需要三个指标,也即有一个6乘6的相关系数矩阵(严格说来说6乘6的covariance矩阵),其中含有21个独立的known moments(已知参数)。你现在只有一个3乘3的矩阵,含6个已知参数,信息远远不够。后果是什么?你估算的模型中含有大量测量误差,与完全不顾测量误差的回归分析差别不大。
如果你X有两个指标,情况会好一些;如果X有三个指标,会更好一些(但模型中还会有因为Y只有两个指标的误差)。但如果X还是一个指标而Y有三个(或更多)指标,则与事无补。
四、如何编写LISREL程序是个难以通过博客帖子回答清楚的问题。最有效的方法是听一位操作型老师面授10来小时的基本指令。当然,我知道国内很少有这种课程。能教的老师还是有的,但能讲清LISREL操作指令的老师大多是科研高手,时间很紧,而且讲操作指令会被同行看低。国外有些大学的社会科学计算中心会有免费培训,实为功德无量。社会上有更正规的培训,如http://www.ssicentral.com/workshops/lisrelbegin.html,当然收费不薄。这里有两个基本教材,供自学:http://www.ssicentral.com/lisrel/techdocs/SIMPLISSyntax.pdf;http://nd.edu/~rwilliam/stats2/l95.pdf。
No comments:
Post a Comment