张君 @ 2010-08-31:
老師: 您好! 我來自台灣,姓張。看了老師許多的文章,讓我受益良多。在此有個統計上的問題,想要冒昧請教:如果我要研究的依變數為多分類(多於二分類),各類之間又沒有順序時,我是否該用multinomial logistic model來加以分析?但是,如果我的依變數各分類之間的關係為不獨立時,是否就該改用別的model?
舉例來說:我想研究什麼樣的學生會選擇什麼樣的交通工具去上課時,依變數是一個三分類的變數,選項分別為搭紅色的車,搭藍色的車以及不撘車。如果用multinomial logit的話,IIA檢定是一定每沒辦法過的;改用multinomial probit的話,在理論上又好像不太對。由於學生們的選擇在理論上來說應該是先選擇搭不搭車,再來選搭紅色或搭藍色的車,所以我是不是應該各別跑一個二元logit模型呢?第一個分析搭不搭車,第二個分析搭藍色或紅色。還是有其他更好的方法可以做更直接的分析,就請老師多多指教了。
庄主 @ 2010-09-04:
很抱歉,我对IIA 假定(Independence of Irrelevant Alternatives,不知你们是如何译成中文的?)知之不多,没有做过任何第一手的研究。以下只是根据直觉来谈谈,不要太拿我的话当一回事。
从有关文献来看,我觉得IIA假定是一个相当理想化的状态。就是说,各种选择中的 irrelevant alternative(s)(“无关选项”?)是真正无关或独立的。然而,这种理想状态大概只能在实验条件下才会出现。而在实际生活或实际研究中,很难会有真正的独立选项。(我对台湾不太了解,但一直好奇:2004年大选,如果没有第三党候选人,结果会一样吗?)
如你的“红车、蓝车和不搭车”问题,大概也只是一个举例,你的实际数据应该更复杂一些。
简言之,多项选择之间的关系,应该是一个理论而不是统计问题,需要根据具体的研究问题来确定。如果没有明确的理论指引,我个人倾向将各项选择看作是相关事件的竞争关系(我自己的很多研究课题都是根据zero-sum原则来展开的)。当然,你可以同时用两种或多种方法分别分析一下,看看各种结果之间有多大差别?那种方法的结果看上去更合常理?