2010-09-04

如何判断各项选择之间是否存在独立关系?

张君 @ 2010-08-31:

老師: 您好! 我來自台灣,姓張。看了老師許多的文章,讓我受益良多。在此有個統計上的問題,想要冒昧請教:如果我要研究的依變數為多分類(多於二分類),各類之間又沒有順序時,我是否該用multinomial logistic model來加以分析?但是,如果我的依變數各分類之間的關係為不獨立時,是否就該改用別的model?

舉例來說:我想研究什麼樣的學生會選擇什麼樣的交通工具去上課時,依變數是一個三分類的變數,選項分別為搭紅色的車,搭藍色的車以及不撘車。如果用multinomial logit的話,IIA檢定是一定每沒辦法過的;改用multinomial probit的話,在理論上又好像不太對。由於學生們的選擇在理論上來說應該是先選擇搭不搭車,再來選搭紅色或搭藍色的車,所以我是不是應該各別跑一個二元logit模型呢?第一個分析搭不搭車,第二個分析搭藍色或紅色。還是有其他更好的方法可以做更直接的分析,就請老師多多指教了。

庄主 @ 2010-09-04:

很抱歉,我对IIA 假定(Independence of Irrelevant Alternatives,不知你们是如何译成中文的?)知之不多,没有做过任何第一手的研究。以下只是根据直觉来谈谈,不要太拿我的话当一回事。

从有关文献来看,我觉得IIA假定是一个相当理想化的状态。就是说,各种选择中的 irrelevant alternative(s)(“无关选项”?)是真正无关或独立的。然而,这种理想状态大概只能在实验条件下才会出现。而在实际生活或实际研究中,很难会有真正的独立选项。(我对台湾不太了解,但一直好奇:2004年大选,如果没有第三党候选人,结果会一样吗?)

如你的“红车、蓝车和不搭车”问题,大概也只是一个举例,你的实际数据应该更复杂一些。

简言之,多项选择之间的关系,应该是一个理论而不是统计问题,需要根据具体的研究问题来确定。如果没有明确的理论指引,我个人倾向将各项选择看作是相关事件的竞争关系(我自己的很多研究课题都是根据zero-sum原则来展开的)。当然,你可以同时用两种或多种方法分别分析一下,看看各种结果之间有多大差别?那种方法的结果看上去更合常理?

2010-09-03

如何检验两个模型拟合度的差别?

Anonymous @ 2010-09-01:

祝老师您好!我看了您对“为何不同模型的路径系数和拟合度相同”一文的回复,有一处不明白。想向您请教。即,当两个模型对同一组数据的拟合都可以接受时,如何检验这两个模型的拟合度之间有没有显著差异呢?

庄主 @ 2010-09-02:

首先要分清这两个模型之间是否具有从属关系。如果是的,可以用常规的模型比较方法来检验;否则需要用非参数的统计量。下面分别说一下。

主从关系模型之比较

什么是模型之间的主从关系 (hierarchically nested)?如果两个模型(A和B)具有相同的变量(包括隐含因子和观测指标)、而其中模型B是在模型A的基础上减去若干参数,这两个模型就被认为是有主从关系。按参数的个数来看,模型A是主(full model)、模型B是从(reduced model)。请看以下例子:

image image image

上图中,A和B在measurement model(测量模型层面)上完全相同;但在structural model(结构模型层面)上则不同:在A中因子X对因子Y有直接影响(记为g2),而在B中X对Y没有直接影响(也即g2=0)。这两个模型之间就是具有上述的主从关系,所以可以直接用常规的模型比较方法对两者之间的差别进行显著性检验。

所谓“常规的模型比较方法”,是指计算两个具有主从关系的模型的卡方值(分别记为χAsup>2和χBsup>2)之差(记为Δχ2),然后根据两个模型的自由度(分别记为dfA和dfχB)之差(Δdf),从卡方分布表中查出该Δχ2),所对应的显著水平(p-level)。

以上图中的模型A和B为例。假定A的χA2 = 150.0而B的χA2 = 145.0,Δχ2 = 150.0 - 145.0 = 5.0,而dfA = 22(这不是假定而是实际的,因为该数据有45个已知值、23个参数;大家可参照前贴如何计算SEM中的自由度?来计算本例各模型的自由度)、dfB = 23(很显然,因为B少用了一个参数、因此多一个自由度)、Δdf = 1。根据卡方分布表(可参考以下http://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html),如果df = 1而χ2 = 5时,其对应的p-level = 0.0253。那么,我们的结论是什么呢?即,A和B之间是否有显著差别呢?或者,在A和B之间我们应该选择哪个呢?请大家自己得出结论。如果有疑问,请继续提出。

非主从关系模型之比较

如果两个具有同样变量的模型之间没有上述的hierarchical nested关系,就无法直接比较了。上图中,A和C也是有主从关系的,但B和C却不具备主从关系,尽管两者都是A的从属。两个非主从关系的模型之间的比较,一般是用Akaike Information Criterion (AIC)或类似的非参数统计量(non-parametric statistics)如Bozdogan's Consistent AIC (CAIC)或Browne-Cudeck Criterion (BCC)。所谓“非参数统计量”是指该统计量的概率分布(也就是说其显著性水平)是个未知数。所以比较两个非主从关系的模型之间AIC(或其它)的差别,我们只能知道其中那个模型对数据的拟合更好一些、但不能确定这种差别在总体里是否存在。

以上图的B和C为例,假定AICB = 120和AICC = 135,我们可以知道B对数据的拟合更好(因为AIC及其它类似统计量都是越小越好),但是我们无法得知ΔAIC = 15的p-level是什么。因此,非主从关系的模型之间的比较,只是非正式的研究。

如果一定要检验两个非主从关系模型之间差别的显著性,那就需要找到一个B的替身(且称为B’),其即同时为B和C的主模型、但又与B没有显著差别。在本例中,A是B和C的主模型、但是与B有显著差别,所以不能承担B的替身。如果能找到B’,那么B’与C是主从关系,就可以按上述的常规模型比较方法来检验B’与C的差别了。