2010-04-22

如何比较自变量与中介变量的解释力?

YF @ 2010-04-19:

庄主,非常感谢您对学生的慷慨指导,我想向您请教一个新问题。《管理世界》上有篇文章(见以下出处),是研究中介效应的,其自变量是家长式领导方式,应变量是团队绩效,团队冲突管理方式。作者按照Baron & Kenny(1986)检验中介变量的方法,分析结果用表2表示。

clip_image002

我的问题和该作者文章没有关系,是以该文章为例:(1)如果比较中介变量和自变量对应变量的解释力是否有意义?(2)如果有意义,是否根据下表2结果可以比较中介变量和自变量对应变量的解释力?如果可以根据下表2结果比较,那么看哪两个数据?例如:如果比较仁慈领导和合作型团队冲突解决方式对团队绩效的解释力,是根据0.726**(model 3)〉0.513**(model 2),还是根据0.662**(model 4)〉0.126(model 4),认为仁慈领导对团队绩效的解释力大于合作型团队冲突解决方式对团队绩效的解释力。

文献出处:张新安, 何惠, 顾锋. 家长式领导行为对团队绩效的影响:团队冲突管理方式的中介作用. 管理世界, 2009, 3: 121-133.

庄主 @ 2010-04-21:

问题1:比较中介变量与自变量之间对因变量的解释力之差别,是否有意义?有,但这只是检验中介效应的规定动作之一。强度版的中介效应要求自变量(X)对因变量(Y)的直接影响(Byx)= 0 而其通过中介变量(W)的间接影响(RwxByw) > 0;而弱度版的中介效应则要求Byx < RwxByw。也就是说,Byx < Byw是中介效应的必要条件(因为Rwx小于1.0)。所以两者的差别是不喻而言的。如果Byx大于或等于Byw,那就没有必要再谈中介效应了。

问题2:如果比较Byx与Byw的大小,应该看模型4。你的困惑来源于作者不合适、也无必要用了四步的hierarchical回归(“分批进入回归”,参见我数贴中对在类似场合下使用这种方法的批评),模型2(自变量模型)和模型3(中介变量模型)的系数是不能直接比较的,因为模型2中的Byx是在Byw缺席情况下估算的,其中含有通过Byw的间接影响,所以是夸大了的;同样,模型3中的Byw的影响也因为由于Byx的缺席而被夸大了。只有两者同时出席的模型4才是直接比较的地方。

当然,模型2和模型3也有其用此,就是通过计算模型4的R平方 - 模型2的R平方(= 0.505 – 0.307 = 0.198)来得知两个中介变量(合作型和竞争型)对因变量的联合解释力,并通过计算模型4的R平方 - 模型3的R平方(= 0.505 – 0.478 = 0.027)来得知三个自变量(权威、仁慈、德行)对因变量的联合解释力。而表中模型2和模型3的ΔR平方则是没有什么意义的。由于很多读者对此有困惑,我再重复一下这种“nested testing”(嵌镶式检验)与上述“分批进入回归”的区别:

假定模型为Y = b0 + b1X1 + b2X2 + b3X3,分批进入回归的做法是估计三个模型,分别为Y = b0 + b1X1, Y = b0 + b1 + X2, Y = b0 + b1X1 + b2X2 + b3X3,然后认为:模型1的R平方代表X1对Y的解释力、模型2的R平方与模型1的R平方的差别为X2对Y的解释力、模型3的R平方与模型2的R平方的差别为X3对Y的解释力。其问题是模型1的R平方中包含了X2和X3的贡献、模型2的R平方中包含了X3的贡献。

嵌镶式检验是估计四个模型,分别为1:Y = b0 + b1X1 + b2X2 + b3X3(全模型),2:Y = b0 + b2X2 + b3X3(X1缺席模型),3:Y = b0 + b1X1 + b3X3(X2缺席模型),4:Y = b0 + b1X1 + b2X2(X3缺席模型),然后认为:模型1与2的R平方之差为X1对Y的独立解释力、模型1与3的R平方之差为X2对Y的独立解释力、模型1与3的R平方之差为X3对Y的独立解释力。这里的最后一步与分批进入回归的最后一步相同、但其它比较有数量和质量上的区别。注意,嵌镶式检验的三个R平方差其实就是模型1中X1、X2和X3的semipartial correlation,在SPSS中叫做“part correlation”,可以只估算模型1而得知,不需再分别运行模型2-4的。对初学者来说,分别操作一下有助于从理念上认识上面讨论的各种问题的逻辑。

2010-04-18

如何绘制个人增长曲线图?

Z @ 2010-04-15:

我们有一3个wave的panel样本,用GLM Repeated Measures分析数据,并从中画出三个时间点上样本的平均值。我们写了一篇论文投给某国际期刊,有位评审人要求我们随机抽取10人,在同一图里显示各自的growth curves。我们在SPSS中试了很久,怎么也无法制作这种图。不知是否可以在SPSS中“自动”做到?

庄主 @ 2010-04-18:

最近我教的统计课里,也有一位同学提出相同的问题,其答案在于纵向数据的特殊结构。一般说来,纵向数据的结构有“矮胖型”和“瘦长型”两种。但你们需要的是第三种结构。

矮胖型数据与更常见的横向数据相似,每一列是一个变量、每一行是一个个案,由于纵向数据的因变量有多个时点的观测值,每个观察值被当做一个变量,分别占领一列,一般在因变量名后加下标1、2、…、t(t=时间点个数)来显示各自的观测时间点。所以,这种结构的正式学名叫做“multivariate format”(因变量多列型)。如表一代表你们的数据,其中Y1、Y2和Y3是因变量Y在三个时间点上的观察值,注意它们是被当做三个变量分别各占据一列,X是自变量(只测量一次,所以只有一列)、最后的“…”表示还可以有其它自变量。GLM、SEM等都是使用这种结构的数据。但是,这种数据无法用来制作“intrapersonal growth curves”。

表一、因变量多列型数据结构(n行记录、t列因变量)

ID Y1 Y2 Y3 X ...
1 y11 y12 y13 x1
2 y21 y22 y23 x2
... ...
n yn1 yn2 yn3 xn

在瘦长型结构中,因变量只占一列,但是每个个案占三列,因此因变量y1、y2和y3分布在这三行之中(见表二)。为了保留Y的观测时间点,新增加了一个变量Time,取值1、2、…、t。这种结构的正式学名叫做“multirecord format”(个案多行型),是HLM和其他多层分析软件所要求的数据格式。在这种数据结构中,你可以通过选择个人的ID来显示一个人的增长曲线,但也无法在同一图中显示多人的增长曲线。

表二、个案多行型数据结构(n x t行记录、1列因变量)

ID Time Y X
1 1 y11 x1
1 2 y12 x1
1 3 y13 x1
2 1 y21 x2
2 2 y22 x2
2 3 y23 x2
n 1 yn1 xn
n 2 yn2 xn
n 3 yn3 xn

如要在同一图中显示多条增长曲线,需要将矮胖型或瘦长型数据转换成第三种结构,这在文献中还没有专门的名称,我姑且称之为individuals-as-variables format(“每人一列型”),如表三所示。这种结构更加“奇怪”,每一列是一个人的因变量或自变量,而每一行是一个时间点。本例t = 3,所以只有三行,比起矮胖型的n行来更加矮胖了。这种结构不适合做统计分析,但十分适合做各种图形,如可以做以Time为X-轴、单个或多个Y为Y-轴的增长曲线,也可以做以X为X-轴、Y为Y-轴的个人层面X-Y散点图。

表三、每人一列型数据结构(t行记录、n列因变量)

Time ID1_Y ID1_X ID2_Y ID2_X IDn_Y IDn_X
1 y11 x1 y21 x2 yn1 xn
2 y12 x1 y22 x2 yn2 xn
3 y13 x1 y23 x3 yn3 xn

好了,根据上述原理,你可以按需要而将数据在这三种结构之间互相转换。当然,如果你会使用SPSS的Syntax指令,确实可以用以下(或类似)的指令来“自动化”操作(注:指令中的大写字母是SPSS指令、小写字母是可以替代的变量名或文件名)。

*1. 假定你的数据是矮胖型结构,首先转换成瘦长数据.
VECTOR j=y1 to y3.
LOOP i=1 to 3.
COMPUTE y=j(i).
COMPUTE time=i.
XSAVE OUT 'r:\temp.sav'/KEEP id time y x.
END LOOP.
EXE.

*2. 随机抽取10个个案.
SAMPLE 10 FROM 100.  
EXE.
MATCH FILES FILE */KEEP id.    /*只保留被抽取的id.
AUTORECODE id/into newid.      /*对id重新排序.

*3. 与瘦长数据并行对接.
MATCH FILES TABLE */FILE 'r:\temp.sav'/BY id.
SELECT IF newid>0.     /*剔除没有newid的个案.
EXE.

*4. 从瘦长数据中逐个提取个案,分别保留到单独文件中.
DEFINE !newcase (!POS, !CMDEND).
!DO !i !IN (!1).
TEMP.
SELECT IF newid=!i.
SAVE OUT !QUOTE(!CONCAT('r:\newcase', !i, '.sav'))
  /KEEP time y x
  /rename (y=!concat('y', !i)/rename (x=!concat('x', !i).
!DOEND.
!ENDDEFINE.
!newcase 1 2 3 4 5 6 7 8 9 10.
EXE.

*5. 将10个单独文件平行对接起来,构成最后的“个案每列”结构.
MATCH FILES FILE 'r:\newcase1.sav'
  /FILE 'r:\newcase2.sav'
  /FILE 'r:\newcase3.sav'
  /FILE 'r:\newcase4.sav'
  /FILE 'r:\newcase5.sav'
  /FILE 'r:\newcase6.sav'
  /FILE 'r:\newcase7.sav'
  /FILE 'r:\newcase8.sav'
  /FILE 'r:\newcase9.sav'
  /FILE 'r:\newcase10.sav'.
EXE.

*6. 打印10个因变量对时间的散点图.
TSPLOT y1 y2 y3 y4 y5 y6 y7 y8 y9 y10/ID=time.

以下是步骤6制作的10条“个人增长曲线“图,估计就是你们要画的那种了。

image