YF @ 2010-04-19:
庄主,非常感谢您对学生的慷慨指导,我想向您请教一个新问题。《管理世界》上有篇文章(见以下出处),是研究中介效应的,其自变量是家长式领导方式,应变量是团队绩效,团队冲突管理方式。作者按照Baron & Kenny(1986)检验中介变量的方法,分析结果用表2表示。
我的问题和该作者文章没有关系,是以该文章为例:(1)如果比较中介变量和自变量对应变量的解释力是否有意义?(2)如果有意义,是否根据下表2结果可以比较中介变量和自变量对应变量的解释力?如果可以根据下表2结果比较,那么看哪两个数据?例如:如果比较仁慈领导和合作型团队冲突解决方式对团队绩效的解释力,是根据0.726**(model 3)〉0.513**(model 2),还是根据0.662**(model 4)〉0.126(model 4),认为仁慈领导对团队绩效的解释力大于合作型团队冲突解决方式对团队绩效的解释力。
文献出处:张新安, 何惠, 顾锋. 家长式领导行为对团队绩效的影响:团队冲突管理方式的中介作用. 管理世界, 2009, 3: 121-133.
庄主 @ 2010-04-21:
问题1:比较中介变量与自变量之间对因变量的解释力之差别,是否有意义?有,但这只是检验中介效应的规定动作之一。强度版的中介效应要求自变量(X)对因变量(Y)的直接影响(Byx)= 0 而其通过中介变量(W)的间接影响(RwxByw) > 0;而弱度版的中介效应则要求Byx < RwxByw。也就是说,Byx < Byw是中介效应的必要条件(因为Rwx小于1.0)。所以两者的差别是不喻而言的。如果Byx大于或等于Byw,那就没有必要再谈中介效应了。
问题2:如果比较Byx与Byw的大小,应该看模型4。你的困惑来源于作者不合适、也无必要用了四步的hierarchical回归(“分批进入回归”,参见我数贴中对在类似场合下使用这种方法的批评),模型2(自变量模型)和模型3(中介变量模型)的系数是不能直接比较的,因为模型2中的Byx是在Byw缺席情况下估算的,其中含有通过Byw的间接影响,所以是夸大了的;同样,模型3中的Byw的影响也因为由于Byx的缺席而被夸大了。只有两者同时出席的模型4才是直接比较的地方。
当然,模型2和模型3也有其用此,就是通过计算模型4的R平方 - 模型2的R平方(= 0.505 – 0.307 = 0.198)来得知两个中介变量(合作型和竞争型)对因变量的联合解释力,并通过计算模型4的R平方 - 模型3的R平方(= 0.505 – 0.478 = 0.027)来得知三个自变量(权威、仁慈、德行)对因变量的联合解释力。而表中模型2和模型3的ΔR平方则是没有什么意义的。由于很多读者对此有困惑,我再重复一下这种“nested testing”(嵌镶式检验)与上述“分批进入回归”的区别:
假定模型为Y = b0 + b1X1 + b2X2 + b3X3,分批进入回归的做法是估计三个模型,分别为Y = b0 + b1X1, Y = b0 + b1 + X2, Y = b0 + b1X1 + b2X2 + b3X3,然后认为:模型1的R平方代表X1对Y的解释力、模型2的R平方与模型1的R平方的差别为X2对Y的解释力、模型3的R平方与模型2的R平方的差别为X3对Y的解释力。其问题是模型1的R平方中包含了X2和X3的贡献、模型2的R平方中包含了X3的贡献。
嵌镶式检验是估计四个模型,分别为1:Y = b0 + b1X1 + b2X2 + b3X3(全模型),2:Y = b0 + b2X2 + b3X3(X1缺席模型),3:Y = b0 + b1X1 + b3X3(X2缺席模型),4:Y = b0 + b1X1 + b2X2(X3缺席模型),然后认为:模型1与2的R平方之差为X1对Y的独立解释力、模型1与3的R平方之差为X2对Y的独立解释力、模型1与3的R平方之差为X3对Y的独立解释力。这里的最后一步与分批进入回归的最后一步相同、但其它比较有数量和质量上的区别。注意,嵌镶式检验的三个R平方差其实就是模型1中X1、X2和X3的semipartial correlation,在SPSS中叫做“part correlation”,可以只估算模型1而得知,不需再分别运行模型2-4的。对初学者来说,分别操作一下有助于从理念上认识上面讨论的各种问题的逻辑。